Extensions 1→N→G→Q→1 with N=C56 and Q=C22

Direct product G=N×Q with N=C56 and Q=C22
dρLabelID
C22×C56224C2^2xC56224,164

Semidirect products G=N:Q with N=C56 and Q=C22
extensionφ:Q→Aut NdρLabelID
C561C22 = C8⋊D14φ: C22/C1C22 ⊆ Aut C56564+C56:1C2^2224,103
C562C22 = D7×D8φ: C22/C1C22 ⊆ Aut C56564+C56:2C2^2224,105
C563C22 = D56⋊C2φ: C22/C1C22 ⊆ Aut C56564+C56:3C2^2224,109
C564C22 = D8⋊D7φ: C22/C1C22 ⊆ Aut C56564C56:4C2^2224,106
C565C22 = D7×SD16φ: C22/C1C22 ⊆ Aut C56564C56:5C2^2224,108
C566C22 = D7×M4(2)φ: C22/C1C22 ⊆ Aut C56564C56:6C2^2224,101
C567C22 = C7×C8⋊C22φ: C22/C1C22 ⊆ Aut C56564C56:7C2^2224,171
C568C22 = C2×D56φ: C22/C2C2 ⊆ Aut C56112C56:8C2^2224,98
C569C22 = C2×C56⋊C2φ: C22/C2C2 ⊆ Aut C56112C56:9C2^2224,97
C5610C22 = D7×C2×C8φ: C22/C2C2 ⊆ Aut C56112C56:10C2^2224,94
C5611C22 = C2×C8⋊D7φ: C22/C2C2 ⊆ Aut C56112C56:11C2^2224,95
C5612C22 = C14×D8φ: C22/C2C2 ⊆ Aut C56112C56:12C2^2224,167
C5613C22 = C14×SD16φ: C22/C2C2 ⊆ Aut C56112C56:13C2^2224,168
C5614C22 = C14×M4(2)φ: C22/C2C2 ⊆ Aut C56112C56:14C2^2224,165

Non-split extensions G=N.Q with N=C56 and Q=C22
extensionφ:Q→Aut NdρLabelID
C56.1C22 = C8.D14φ: C22/C1C22 ⊆ Aut C561124-C56.1C2^2224,104
C56.2C22 = C7⋊D16φ: C22/C1C22 ⊆ Aut C561124+C56.2C2^2224,32
C56.3C22 = D8.D7φ: C22/C1C22 ⊆ Aut C561124-C56.3C2^2224,33
C56.4C22 = C7⋊SD32φ: C22/C1C22 ⊆ Aut C561124+C56.4C2^2224,34
C56.5C22 = C7⋊Q32φ: C22/C1C22 ⊆ Aut C562244-C56.5C2^2224,35
C56.6C22 = D83D7φ: C22/C1C22 ⊆ Aut C561124-C56.6C2^2224,107
C56.7C22 = D7×Q16φ: C22/C1C22 ⊆ Aut C561124-C56.7C2^2224,112
C56.8C22 = Q8.D14φ: C22/C1C22 ⊆ Aut C561124+C56.8C2^2224,114
C56.9C22 = SD16⋊D7φ: C22/C1C22 ⊆ Aut C561124-C56.9C2^2224,110
C56.10C22 = Q16⋊D7φ: C22/C1C22 ⊆ Aut C561124C56.10C2^2224,113
C56.11C22 = SD163D7φ: C22/C1C22 ⊆ Aut C561124C56.11C2^2224,111
C56.12C22 = D28.C4φ: C22/C1C22 ⊆ Aut C561124C56.12C2^2224,102
C56.13C22 = C7×C8.C22φ: C22/C1C22 ⊆ Aut C561124C56.13C2^2224,172
C56.14C22 = D112φ: C22/C2C2 ⊆ Aut C561122+C56.14C2^2224,5
C56.15C22 = C112⋊C2φ: C22/C2C2 ⊆ Aut C561122C56.15C2^2224,6
C56.16C22 = Dic56φ: C22/C2C2 ⊆ Aut C562242-C56.16C2^2224,7
C56.17C22 = D567C2φ: C22/C2C2 ⊆ Aut C561122C56.17C2^2224,99
C56.18C22 = C2×Dic28φ: C22/C2C2 ⊆ Aut C56224C56.18C2^2224,100
C56.19C22 = D7×C16φ: C22/C2C2 ⊆ Aut C561122C56.19C2^2224,3
C56.20C22 = C16⋊D7φ: C22/C2C2 ⊆ Aut C561122C56.20C2^2224,4
C56.21C22 = C2×C7⋊C16φ: C22/C2C2 ⊆ Aut C56224C56.21C2^2224,17
C56.22C22 = C28.C8φ: C22/C2C2 ⊆ Aut C561122C56.22C2^2224,18
C56.23C22 = D28.2C4φ: C22/C2C2 ⊆ Aut C561122C56.23C2^2224,96
C56.24C22 = C7×D16φ: C22/C2C2 ⊆ Aut C561122C56.24C2^2224,60
C56.25C22 = C7×SD32φ: C22/C2C2 ⊆ Aut C561122C56.25C2^2224,61
C56.26C22 = C7×Q32φ: C22/C2C2 ⊆ Aut C562242C56.26C2^2224,62
C56.27C22 = C14×Q16φ: C22/C2C2 ⊆ Aut C56224C56.27C2^2224,169
C56.28C22 = C7×C4○D8φ: C22/C2C2 ⊆ Aut C561122C56.28C2^2224,170
C56.29C22 = C7×M5(2)central extension (φ=1)1122C56.29C2^2224,59
C56.30C22 = C7×C8○D4central extension (φ=1)1122C56.30C2^2224,166

׿
×
𝔽